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Background & Aims: Hfe knockout mice, like patients
with hereditary hemochromatosis, have augmented du-
odenal iron absorption and increased iron deposition in
hepatic parenchymal cells. The goals of the present
study were to gain further insight into the control of iron
absorption by comparing the transcript levels of iron-
related genes in the duodenum of DBA/2 Hfe2/2 mice,
susceptible to iron loading, and wild-type controls, and
to test whether variations in the duodenal expression
of these messengers contribute to the DBA/2 and
C57BL/6 strain differences in the severity of hepatic
iron loading. Methods: Expression of the different tran-
scripts was quantified by real-time polymerase chain
reaction. Results: The 2 strains differ strikingly, not only
in the severity of hepatic iron loading, but also in the
duodenal expression of iron-related genes. In DBA/2
Hfe2/2 mice, increased intestinal iron absorption results
from the concomitant up-regulation of the Dcytb, DMT1,
and FPN1 messengers. No increase in the expression of
these messengers is seen in C57BL/6 Hfe2/2 mice.
Conclusions: The up-regulation of these transcripts sug-
gests that an inappropriate iron-deficiency signal is
sensed by the duodenal enterocytes, leading to an en-
hanced ferric reductase activity and the increase of
duodenal iron uptake and transfer to the circulation. The
genes modifying the hemochromatosis phenotype prob-
ably act by modifying the expression of these 3 messen-
gers.

Hereditary hemochromatosis (HH) is a common au-
tosomal-recessive disorder of iron homeostasis

characterized by increased dietary iron absorption and
progressive iron accumulation, mainly in the liver. If
untreated, iron accumulation can result in tissue damage,
with clinical manifestations that include cirrhosis, he-
patic carcinoma, congestive heart failure, and premature
death.1 The hemochromatosis gene, now called HFE, was
isolated in 1996. Most patients with HH carry the same
mutation, resulting in a change from cysteine to tyrosine

at position 282 (C282Y) in the HFE protein.2 Formal
proof that mutations in HFE result in iron loading was
provided by disrupting Hfe in mice.3–5 Hfe knockout
(Hfe2/2) mice, like HH patients, have augmented duo-
denal iron absorption, abnormally high plasma trans-
ferrin saturations, and increased iron deposition in
hepatic parenchymal cells. However, despite our under-
standing of the genetic basis of HH, the exact function of
HFE in iron homeostasis remains unknown. The finding
that wild-type HFE, but not the C282Y mutant HFE,
binds to transferrin receptor (TfR) and reduces its affinity
for transferrin6 has led to various hypotheses of how
HFE-TfR interactions establish a set point to regulate
intestinal iron absorption,7–9 but none of them has been
formally proved.

Nonheme dietary iron, mostly in the form of ferric
iron complexes, is first converted to a transportable form
by duodenal cytochrome b (Dcytb), a putative brush-
border, surface ferric reductase.10 Ferrous iron is then
supplied to divalent metal transporter 1 (DMT1), for-
merly called Nramp2 or DCT1, an apical transmembrane
iron transporter that actively transports reduced dietary
iron into intestinal enterocytes.11,12 Iron traverses the
epithelial cell and is exported through the basolateral
membrane by a process that involves a second transmem-
brane iron transporter, ferroportin 1 (FPN1, also known
as IREG1 or MTP1),13–15 and requires the transmem-
brane-bound multicopper ferroxidase, hephaestin.16 An-
other protein, called stimulator of Fe transport (SFT), has
been described recently.17 SFT, which is expressed in
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various organs, including the liver and the duodenum,
has been found to facilitate both transferrin- and non–
transferrin-bound iron uptake17 and its enhanced expres-
sion in the liver of HH patients might contribute to the
disease pathogenesis.18

Interestingly, Hfe2/2 mice that carry mutations in
DMT1 do not develop hepatic iron overload.19 However,
whether the increased intestinal iron absorption of
Hfe2/2 mice and HH patients results from up-regulated
DMT1 is still controversial. Fleming et al.20 reported
that Hfe2/2 mice have greater duodenal DMT1 messen-
ger RNA (mRNA) levels than Hfe1/1 mice, whereas a
similar investigation found no differences in DMT1
mRNA and protein levels between knockout mice and
controls.21 The possibility that the increased intestinal
absorption observed in Hfe2/2 mice and HH patients
might result from up-regulation of molecules other than
or in addition to DMT1 has not been tested so far.

Another question of great interest is understanding
why the severity of iron loading and clinical disease is
variable in human patients with identical HFE geno-
types, with some individuals homozygous for the C282Y
mutation who do not show iron overload.22–24 In the
mouse, marked differences in the severity of hepatic iron
loading in response to Hfe disruption have also been
observed between the C57BL/6 and AKR strains, sug-
gesting the existence of genes that modify the gravity of
iron accumulation in this murine model of HH.25 We
observed that, compared with the C57BL/6 strain, the
DBA/2 strain was also particularly susceptible to iron
loading in response to Hfe disruption.

The first objective of the present study was thus to get
more insight into the control of iron absorption by
comparing the transcript levels of the recently described
molecules participating in this process, Dcytb, DMT1,
FPN1, hephaestin, and SFT, in the duodenum of DBA/2
Hfe2/2 mice, susceptible to iron loading, and DBA/2
Hfe1/1 controls. The second objective was to test
whether variations in either the iron-reducing step, the
apical-uptake step into the enterocyte, or the basolateral-
transfer step might contribute to the mouse strain dif-
ferences observed in the severity of iron accumulation by
comparing the transcript levels of the molecules partic-
ipating in these different steps in the duodenum of
C57BL/6 and DBA/2 Hfe2/2 mice.

Materials and Methods

Mice

The disrupted Hfe allele, initially on a mixed back-
ground (129/Ola 3 C57BL/6),3 was bred by successive crosses
for 9 generations onto the DBA/2 and C57BL/6 backgrounds.

Mice heterozygous for the disrupted allele were then mated to
produce Hfe-null (Hfe2/2) mice. DBA/2 and C57BL/6 mice
were purchased from the Centre d’Elevage Robert Janvier (Le
Genest St-Isle, France) and used as wild-type (Hfe1/1) controls.
The studied DBA/2 population consisted of 8 male and 8
female Hfe1/1 mice, and 12 male and 11 female Hfe2/2 mice.
The studied C57BL/6 population consisted of 5 male and 6
female Hfe1/1 and 16 male and 10 female Hfe2/2 mice. Hfe2/2

and wild-type mice were housed in the IFR30 animal facility
and had free access to water and R03 diet (UAR, Epinay-sur-
Orge, France) containing 280 mg Fe/kg. All mice were ana-
lyzed between 6 and 7 weeks of age and fasted for 14 hours
before blood sampling. After blood was obtained, the mice
were killed and the duodenum (2-cm length of small intestine
distal to the pylorus) was dissected for RNA isolation. Mucosa
samples were scraped with a glass slide. Experimental protocols
were approved by the IFR30 Animal Care and Use Committee.

Measurement of Serum Iron, Transferrin
Saturation, and Tissue Iron Content

Blood was obtained by puncture of the inferior vena
cava. Serum iron and total iron binding capacity (TIBC) were
assessed on a Roche/Hitachi 717 Automatic Analyzer (Roche
Diagnostics, Meylan, France), by using a method based on
ascorbic acid as reducing agent and ferrozine as chromagen.
TIBC was measured after saturation of the transferrin by an
iron solution and absorption of the excess iron on magnesium
hydroxycarbonate, according to the TIBC kit protocol (ABX
Diagnostics, Montpellier, France). Transferrin saturation was
calculated as (serum iron/TIBC) 3 100%. Hepatic iron con-
tent was evaluated as described previously.26 Briefly, the liver
specimens (0.5–4 mg) were first desiccated for 24 hours at
120°C in a ventilated oven. Thereafter, the dried samples were
weighed and mineralized by strong acid digestion and heating.
Iron was then complexed to the bathophenantroline sulfonate
chromogen and absorbance measured at 535 nm. For histologic
assessment of nonheme iron deposition, tissue sections were
stained with Perl’s Prussian blue, counterstained with nuclear
fast red, and examined by light microscopy.

Quantification of Duodenal Transcripts
Through Real-Time Polymerase
Chain Reaction

Expression of duodenum-specific transcripts was ana-
lyzed by a 2-step reverse-transcription polymerase chain reac-
tion (PCR). Total RNA from mouse duodenum was isolated by
using the SV Total RNA Isolation System (Promega, Char-
bonnières, France). RNA was then reverse-transcribed into
complementary DNA with the M-MLV reverse transcriptase
RNase H2 (Promega). Quantification of the different mRNAs
was performed through real-time PCR on a 5700 Sequence
Detection System (Applied Biosystems, Courtaboeuf, France).
The PCR reaction mix contained the complementary DNA
quantity equivalent to 75 ng RNA, 0.3 mmol/L of each primer
(sequences on Table 1), 4 3 1025X SYBR Green I (Sigma-
Aldrich, Saint-Quentin Fallavier, France), 1X ROX (Life
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Technologies, Cergy Pontoise, France) to normalize for non–
PCR-related fluctuations in fluorescence signal, and 1X Plat-
inum Quantitative PCR SuperMix-UDG (Life Technologies).
PCR amplification began with 1 cycle of 50°C for 2 minutes
(UDG-PCR carry-over decontamination) and 95°C for 10
minutes, followed with 40 cycles of denaturation at 95°C for
15 seconds and annealing/extension at 60°C for 60 seconds.
Direct detection of PCR products was monitored by measuring
the increase in fluorescence caused by the binding of SYBR
Green to double-stranded DNA. All experiments were per-
formed in duplicate. Quantification was obtained by compar-
ing the threshold cycles of unknown samples against standard
curves with known copy numbers.

Data Analyses

Raw values for Dcytb, DMT1, FPN1, hephaestin, and
SFT were first normalized to the b-actin endogenous control to
account for variability in the initial concentration and quality
of the total RNA and in the conversion efficiency of the
reverse-transcription reaction. Briefly, for each experimental
sample, the amounts of target and b-actin mRNAs were
determined from the appropriate standard curves and 106 3
the target amount was divided by the endogenous reference
amount to obtain a normalized target value. Results were
expressed as mean 6 SEM. As observed previously,27 most of
the mRNA distributions had a high degree of skewness.
Therefore, only nonparametric tests or parametric tests after
logarithmic transformations of the variables were applied. The
distributions of transferrin saturation and liver iron content as
well as the distributions of the mRNA quantities obtained in
DBA/2 Hfe1/1 and Hfe2/2 mice were compared by nonpara-
metric Wilcoxon tests. Correlations between transcript levels
were evaluated by Spearman’s rank-order correlation tests. For
strain comparisons, mean values for transferrin saturation, liver
iron concentration, and the mRNA quantities (after logarith-
mic transformation) were compared across mice from the dif-
ferent strains and with the different genotypes by 1-way
analyses of variance and subsequent Duncan’s multiple-range
tests.

Results
Transferrin Saturation and Hepatic Iron
Concentration in DBA/2 Hfe2/2 Mice

Twenty-three DBA/2 Hfe2/2 mice and 16 Hfe1/1

mice of the same genetic background were analyzed at
6–7 weeks of age. Compared with the Hfe1/1 controls,
the Hfe2/2 mice had highly saturated serum transferrin
levels (86.5% 6 2.2% vs. 45.9% 6 2.4%; P , 0.0001)
and 6.4-fold higher levels of hepatic iron (2420 6 155
vs. 377 6 32 mg Fe/g dry liver; P , 0.0001) (Figure
1A ). The measured elevations in hepatic iron concentra-
tions are within the range of values previously reported
for similarly aged Hfe2/2 mice.3–5 The deposition of liver
iron was predominantly in hepatocytes and showed the
typical zonal gradient seen in patients with HH (not
shown).

Duodenal Expression of the Dcytb, DMT1,
and SFT mRNAs in DBA/2 Hfe2/2 Mice

Transcripts of the molecules involved in reducing
dietary iron to a transportable form (Dcytb) and trans-
porting reduced iron from the intestinal lumen into the
enterocytes (DMT1) were examined first. As indicated in
the Materials and Methods section, all the transcript
amounts reported in this study are values normalized to
the b-actin endogenous control. As shown in Figures 1B
and 1C, the level of duodenal expression of the Dcytb
transcript was increased 6.1-fold on average (1295 6
203 vs. 212 6 46; P , 0.0001) and that of DMT1
5.1-fold (3577 6 1179 vs. 707 6 113; P , 0.0001) in
the Hfe2/2 mice relative to the Hfe1/1 mice of identical
genetic background. Thus, despite elevated serum iron
saturation and liver iron content in Hfe2/2 mice, the
expression of the duodenal Dcytb and DMT1 transcripts
is up-regulated. Dcytb and DMT1 transcript levels were
more significantly correlated in Hfe2/2 mice (Spearman
rank-correlation coefficient R 5 0.72; P , 0.0001) than

Table 1. Primer Pairs Used to Quantify Iron-Related Transcripts Expressed in the Duodenum

Gene Sense and antisense primers GenBank accession number (position)a

Dcytb 59-GCAGCGGGCTCGAGTTTA-39 AF354666 (137-235)
59-TTCCAGGTCCATGGCAGTCT-39

DMT1 59-GGCTTTCTTATGAGCATTGCCTA-39 L33415 (289-385)
59-GGAGCACCCAGAGCAGCTTA-39

FPN1 59-TTGCAGGAGTCATTGCTGCTA-39 AF226613 (1670-1789)
59-TGGAGTTCTGCACACCATTGAT-39

Hephaestin 59-TTGTCTCATGAAGAACATTACAGCAC-39 AF082567 (3803-3963)
59-CATATGGCAATCAAAGCAGAAGA-39

SFT 59-CTGTGCTCATTGAAGAGGACCTT-39 AA178012 (232-329)
59-TCTGGTTGCTTTCTCAGTCACG-39

b-Actin 59-GACGGCCAAGTCATCACTATTG-39 M12481 (652-740)
59-CCACAGGATTCCATACCCAAGA-39

aAll these primers map to gene coding sequences.
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in Hfe1/1 mice (R 5 0.60; P 5 0.01). The transcript
levels of the stimulator of Fe transport, SFT, previously
shown to be localized in the subapical part of the villus
cells,17 were not significantly increased in the duodenum
of the Hfe2/2 mice, compared with the wild-type Hfe1/1

mice (2645 6 370 vs. 2578 6 165; P 5 0.07).

Duodenal Expression of the FPN1 and
Hephaestin mRNAs in DBA/2 Hfe2/2 Mice

Transcripts of the molecules involved in the ex-
port of iron through the basolateral membrane of the
villus enterocytes, FPN1 and hephaestin, were examined
next. As shown in Figure 1D, the level of duodenal
expression of the FPN1 transcript was increased 2.3-fold
(88,028 6 4272 vs. 38,400 6 2805; P , 0.0001) in the
Hfe2/2 mice relative to the Hfe1/1 mice. The level of
duodenal expression of the hephaestin transcript was

increased 1.2-fold, a difference that is not significant
after correction for multiple testing (7695 6 510 vs.
6568 6 846; P 5 0.03). A significant correlation be-
tween the FPN1 and hephaestin transcripts was also
observed in Hfe2/2 (R 5 0.60; P 5 0.003), but not in
Hfe1/1 mice (R 5 0.46; P 5 0.07).

Simultaneous Up-Regulation of the Dcytb,
DMT1, and FPN1 Transcripts in DBA/2
Hfe2/2 Mice

For each mouse, knockout or wild-type, the quan-
tities of the 3 transcripts that were significantly up-
regulated as a consequence of Hfe disruption (Dcytb,
DMT1, and FPN1) were plotted on a 3-dimensional
graph. As can be seen in Figure 2, overall, the 3 processes
of reduction, uptake at the apical membrane, and trans-
port through the basolateral membrane work in unison,

Figure 1. Effect of strain differ-
ences and Hfe genotype on he-
patic iron concentration and on
the duodenal expression of
the Dcytb, DMT1, and FPN1
messengers. The amounts of
Dcytb, DMT1, and FPN1 mRNAs
were normalized by dividing raw
values by the amount of beta-
actin mRNA and expressed as
the normalized values per 106

beta-actin molecules. Data are
presented as mean 6 SEM.
***P , 0.0001; **P 5 0.003
(when Hfe2/2 mice were com-
pared with Hfe1/1 mice of the
same genetic background).

Figure 2. Simultaneous variations
of the Dcytb, DMT1, and FPN1
transcripts in DBA/2 wild-type and
knockout mice. The natural loga-
rithm of the transcript quantities
were used here to induce normality
of the distributions. Simultaneous
variations of the transcripts are
shown in DBA/2 Hfe1/1 (pyramid)
and Hfe2/2 (diamond) mice.
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both in Hfe2/2 and in Hfe1/1 mice. However, the tran-
script levels of the 2 iron transporters, DMT1 and FPN1,
are more significantly correlated in Hfe1/1 mice (R 5
0.78; P 5 0.0004) than in Hfe2/2 mice (R 5 0.47; P 5
0.03).

Expression of the Dcytb, DMT1, and FPN1
mRNAs in C57BL/6 Hfe2/2 Mice

The expression of the 3 transcripts significantly
up-regulated in DBA/2 Hfe2/2 mice were then measured
in 26 C57BL/6 Hfe2/2 mice and 11 Hfe1/1 mice of the
same genetic background. Mean transferrin saturations,
mean concentrations of hepatic iron, and mean levels of
the 3 duodenal transcripts differed significantly across
mice from the different strains and with the different
genotypes (1-way analyses of variance all significant at P
, 0.0001). Within each strain, the Hfe2/2 mice had
significantly higher transferrin saturations and liver iron
concentrations than Hfe1/1 mice. However, the increase
in transferrin saturation was only 1.3-fold in the
C57BL/6 strain (63.6% 6 1.8% vs. 48.0% 6 3.5%),
whereas it was 1.9-fold in the DBA/2 strain (86.5% 6
2.2% vs. 45.9% 6 2.4%). Moreover, as shown in Figure
1A, the increase in liver iron content was only 1.9-fold in
the C57BL/6 strain (711 6 54 vs. 382 6 24 mg Fe/g dry
liver; P 5 0.003), whereas it was previously shown to be
6.4-fold in the DBA/2 strain. These results indicate that
the DBA/2 strain has a much greater propensity for liver
iron loading in response to Hfe disruption than the
C57BL/6 strain, and confirm that the latter strain is
almost resistant.25 The mean levels of the Dcytb, DMT1,
and FPN1 messengers were not significantly different
between C57BL/6 Hfe1/1 mice, C57BL/6 Hfe2/2 mice,
and DBA/2 Hfe1/1 mice, but significantly differed from
the mean levels in the DBA/2 Hfe2/2 mice (Figures
1B–D).

Discussion
The up-regulation of the Dcytb (6.1-fold), DMT1

(5.1-fold), and FPN1 (2.3-fold) transcripts observed in
the DBA/2 Hfe2/2 mice relative to the Hfe1/1 mice of
the same genetic background is reminiscent of the in-
crease in expression of the Dcytb, DMT1 ('15-fold
each), and FPN1 ('2.5-fold) transcripts observed in
wild-type mice fed an iron-deficient diet for 2 weeks
relative to control mice fed an iron-balanced diet (data
submitted for publication). This up-regulation thus very
much resembles the adaptive response of the duodenum
to iron deficiency and suggests that, in DBA/2 Hfe2/2

mice, an inappropriate iron-deficiency signal is sensed by
the duodenal enterocyte despite the considerably in-
creased iron stores (6.4-fold higher levels of hepatic

nonheme iron). Although it is possible that increased
mRNA production does not result in increased protein
production, this hypothesis is unlikely. Indeed, McKie et
al.10 observed that iron deficiency obtained by feeding
mice an iron-deficient diet strongly induced both Dcytb
mRNA levels and protein expression in duodenal ex-
tracts, and that ferric reductase activity was significantly
higher in membranes prepared from Caco-2 cells trans-
fected with Dcytb than in membranes prepared from
untransfected cells. Furthermore, Zoller et al.27 recently
showed that, in humans, differences in DMT1 and FPN1
mRNA expression well reflected the corresponding
changes in the expression of the respective proteins in the
duodenum.

In the mouse, mucosal Fe(III) reduction rates, though
quantitatively higher than uptake rates, paralleled
changes in the iron uptake rates induced by iron defi-
ciency.28 This provides strong evidence for a simulta-
neous up-regulation of both the reduction and uptake
processes at the intestinal level in response to the body’s
needs for iron. The correlated up-regulation of both
Dcytb and DMT1 mRNAs observed in DBA/2 Hfe2/2

mice further shows the close connection between the
reduction and the uptake processes in another pathologic
condition, targeted disruption of the Hfe gene. The lower
degree of significance of this correlation in Hfe1/1 mice
may reflect a regulation taking place specifically when an
iron-deficiency signal, either legitimate or aberrant, as in
hemochromatosis, is relayed to the enterocyte. Of inter-
est, patients with HH show a significant increase in the
duodenal mucosal Fe(III) reducing activity compared
with normal controls. This increase in reducing activity
also correlates with the changes in Fe uptake rates and is
site-specific because no enhancement in reducing activity
was seen with gastric samples.29 The observation that
duodenums of HH patients have higher ferric reductase
activity suggests that the enhanced Dcytb mRNA ex-
pression observed here in the DBA/2 strain correlates
with the conversion of a higher amount of ferric iron to
the ferrous form taken over by the up-regulated DMT1
transporter and thus contributes to the disease etiology.

Other groups have reported increases in duodenal
DMT1 mRNA levels in Hfe knockout mice20 and in
human patients with HH.30 In addition, Griffiths et al.31

clearly showed that disruption of the Hfe gene in mice of
the 129/SvJ background up-regulated functional DMT1
transporters and enhanced uptake of ferrous iron by this
mechanism. These results were recently questioned by
Canonne-Hergaux et al.21 Our data in C57BL/6 Hfe2/2

mice suggest that the source of the discrepancy could be
attributed to strain-to-strain variations between the mice
analyzed in the different studies. Our observations that
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DMT1 and FPN1 mRNA levels are unidirectionally
up-regulated in the DBA/2 Hfe2/2 mice are also in
agreement with the recent findings made in HH pa-
tients27 and very likely mean that increased duodenal
iron uptake, as indicated by high DMT1 mRNA/protein
expression, is associated with increased iron export from
enterocytes into the circulation, as reflected by high
FPN1 mRNA-protein levels.

The nonsignificant changes in hephaestin mRNA lev-
els in Hfe2/2 mice suggest that there is no need for
further enhancement of hephaestin mRNA synthesis to
allow the export of the excess of iron transported from
the intestinal lumen into the enterocytes. Finally, though
the stimulator of Fe transport SFT was shown to be
mildly increased in the duodenum of HH patients,32 its
mRNA expression did not significantly vary in the
DBA/2 Hfe2/2 mice analyzed in this study or in the
129/Sv Hfe2/2 mice previously studied,33 making un-
likely the hypothesis that SFT is responsible for the
increased intestinal iron absorption observed in these
animals.

The mechanism by which the expression of Dcytb,
DMT1, and FPN1 is regulated in response to the needs
of the body for iron and the reasons why their expression
appears unrelated to these needs in the DBA/2 Hfe
knockout mice or the HH patients remain to be deter-
mined. Up-regulation of the 3 transcripts in DBA/2 Hfe
knockout mice suggests that an inappropriate iron-defi-
ciency signal is sensed by the duodenal enterocytes. This
hypothesis is supported by the finding of increased iron
regulatory protein 1 activity and high TfR mRNA ex-
pression, both indicative of intracellular deprivation, in
duodenal biopsy specimens of patients with HH.34 This
inappropriate signal could result from the alteration of a
putative sensor for iron homeostasis whose existence has
been suspected for a long time.9 The nature of this sensor
is still unknown, but the hepcidin peptide that is se-
creted in plasma after synthesis and maturation in the
liver was recently suggested to fulfill this important role.
Indeed, Pigeon et al.35 showed that accumulation of iron
in the liver up-regulated hepcidin expression, whereas
Nicolas et al.36 clearly showed that a complete defect in
hepcidin expression was responsible for progressive tissue
iron overload. The similarities of the alterations in iron
metabolism between Hfe2/2 mice and Usf22/2 hepcidin-
deficient mice36 suggest that hepcidin may function in
the same regulatory pathway as HFE. The requirement of
a functional HFE for hepcidin activity would explain
why DBA/2 Hfe knockout mice incorrectly perceive the
body’s iron needs and up-regulate the transcripts of the
molecules involved in duodenal iron reduction, uptake,
and transfer to the circulation, as shown in this study.

The present work shows that the 2 C57BL/6 and
DBA/2 strains differ strikingly, not only in the severity
of hepatic iron loading in response to Hfe disruption but
also in the duodenal expression of iron-related genes. In
DBA/2 Hfe2/2 mice, increased intestinal iron absorption
results not only from the up-regulation of DMT1, but
also from that of Dcytb and FPN1. On the contrary,
C57BL/6 Hfe2/2 mice do not differ in their duodenal
expression of these mRNAs from C57BL/6 Hfe1/1 and
DBA/2 Hfe1/1 mice. These observations cannot be ac-
counted for by the relatively young age of the mice
analyzed in this study (7 weeks). Indeed, virtually no
hepatic iron staining was detectable in C57BL/6 Hfe2/2

mice maintained up to 42–45 weeks. The marked phe-
notypic differences between the C57BL/6 and DBA/2
Hfe2/2 strains suggest the existence of genes other than
HFE that modify the murine HH phenotype. These
genes probably act by modifying the expression of the
messengers involved in each of the 3 steps of iron reduc-
tion, transport through the apical membrane, and export
through the basolateral membrane of the enterocyte.
Their identification, theoretically possible by carrying a
genome-wide search in the F2 generation, would be of
great practical importance because their human homo-
logues may potentially be involved in the variable sus-
ceptibility to iron loading observed in individuals ho-
mozygous for the HFE C282Y mutation. In any case,
they will add to our understanding of the regulation of
iron homeostasis.
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