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INSERM Unité 563, Centre Hospitalier Universitaire Purpan, Toulouse, France; and ‡INSERM-CreS, Centre de Recherche d’Immunologie et
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ackground & Aims: Hereditary hemochromatosis is a
ommon disorder of iron homeostasis characterized by
ncreased dietary iron absorption and progressive iron
ccumulation, mainly in the liver. Most patients are
omozygous for the C282Y mutation in the HFE gene.
owever, not all individuals carrying the hemochroma-

osis-predisposing genotype in the general population
ecome iron loaded. Genetic modifiers have been
hown to influence disease penetrance, but their num-
er and chromosomal locations remain unknown, and
heir identification is hampered by complex interactions
ith environmental factors. To circumvent these difficul-

ies, we used 2 strains of mice made deficient for the
fe gene that strongly differ in their propensity to de-
elop hepatic iron loading. Methods: To localize the loci
ontrolling hepatic iron loading in this murine model of
emochromatosis, we produced 1028 mice by an F2

ntercross between the C57BL/6 and DBA/2 Hfe-defi-
ient strains. We selected the 276 mice that contributed
he most to the total linkage information for genotyping
ith 145 microsatellite markers. Results: We mapped 4
odifier loci on chromosomes 7, 8, 11, and 12, with

ogarithm of odds scores of 14.47, 12.96, 6.04, and
.72, respectively, in regions containing several genes
ecently shown to exert important roles in the regulation
f iron metabolism. Conclusions: Our data provide a
lear demonstration of the polygenic pattern of hepatic
ron loading inheritance in Hfe-deficient mice. Examina-
ion of candidate genes residing at the loci identified in
his study and genetic analysis of the syntenic chromo-
omal regions in humans may provide important insight
nto the heterogeneous disease presentation observed
mong HFE C282Y homozygotes.

ereditary hemochromatosis (HH) is a common au-
tosomal recessive disorder of iron homeostasis char-

cterized by increased dietary iron absorption and pro-
ressive iron accumulation, mainly in the liver. If
ntreated, iron accumulation can result in tissue damage,
ith clinical manifestations that include cirrhosis, he-
atic carcinoma, congestive heart failure, and premature
eath.1 In northern Europe, most patients with HH are
omozygous for a single mutation (C282Y) in the HFE
ene,2 and approximately 1 person in 200 in the general
opulation carries the HH-predisposing genotype.
However, not all C282Y homozygotes become iron

oaded. Several families in which C282Y-homozygous
embers have a transferrin saturation and serum ferritin
ithin the reference range and no obvious signs or symp-

oms of HH have been discovered through pedigree
esting.3–6 In addition, C282Y homozygosity is not un-
errepresented in the elderly population7 or among cen-
enarians,8 suggesting that life-threatening HH-related
omplications do not occur in most subjects. There is
lso a large discrepancy between the prevalence of the
H-predisposing genotype in the population and the

umber of patients effectively diagnosed and treated
ith HH,9,10 further suggesting that the C282Y ho-
ozygous genotype is not fully penetrant.
The true prevalence of nonexpressing homozygotes has

roven difficult to estimate. It was first assessed in pop-
lation screening studies in which both genotyping and
henotyping were performed.11–16 In these studies, the
revalence of C282Y homozygotes detected with a nor-
al serum ferritin not requiring therapy ranged from

5% to 81%. However, there is still scant information
bout the number of people in the general population
ith the HH-predisposing genotype who have clinical
anifestations caused by the mutation and not merely

ssociated with it. Beutler et al.17 underlined the need for
ontrolled studies to assess the clinical penetrance and
xpressivity of HH, and they estimated in a large case-
ontrol study in California that the clinical penetrance of
he HH-predisposing genotype was less than 1%. Al-
hough this value of disease penetrance cannot be con-
idered as conclusively established,18–20 the data avail-

Abbreviations used in this paper: �2m�/�, �2-microglobulin knock-
ut mice; Hmox1, heme oxygenase 1; HH, hereditary hemochromato-
is; LOD, logarithm of odds; QTL, quantitative trait loci.
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ble today indicate that it is much lower than initially
ppreciated.

A question of great interest is understanding why the
everity of iron loading and clinical disease is variable in
ndividuals homozygous for the C282Y allele. Although
ge, sex, and environmental factors have been shown to
nfluence the disease, genetic factors may also enhance or
educe the phenotypic expression in HH.21 For many
ingle-gene disorders, patients with the same genotypes
ften differ markedly with respect to disease expression
ecause of the effects of additional independently inher-
ted genetic variations.22 It is interesting to note that
here is a higher incidence of HH-related conditions in
elatives, male and female, of clinically affected probands
han in relatives of probands identified because of in-
reased transferrin saturation values, even though the 2
roups of relatives do not differ in any relevant feature.23

his is not unexpected if mutations in modifier genes
etermine whether clinical expression will occur. The
egregation of these mutations in relatives of patients
ould then explain their higher risk of developing clin-

cal HH. Despite clear indications that genetic modifiers
xist,23–26 surveys of multiple genes of iron metabolism
erformed in patients homozygous for the C282Y mu-
ation and in nonexpressing controls have not shown
olymorphisms or mutations associated with increased
ron loading.27 The identification of modifier loci that
ontrol susceptibility to iron overload in at-risk C282Y-
omozygous individuals may be hampered by several
actors, including multiple genetic loci, complex inter-
ctions of environmental factors with the predisposing
enetic background, and genetic heterogeneity.
Murine models of iron loading thus provide a useful

lternative to human models to identify modifier loci and
o better understand the physiological pathways involved
n the disease process. �2-Microglobulin knockout mice
�2m�/�), which do not express Hfe, and Hfe knockout

ice (Hfe�/�) have, like HH patients, augmented duo-
enal iron absorption, abnormally high plasma trans-
errin saturations, increased iron deposition in hepatic
arenchymal cells with periportal predominance, and
elative resistance of the spleen to iron loading.28–31

lthough �2m�/� and Hfe�/� mice differ from HH
atients because they lack most of the clinical manifes-
ations of the disease—such as hypogonadism, hypopi-
uitarism, diabetes mellitus, cardiomyopathy, joint dis-
ase, or frank cirrhosis—they have proven to be valuable
ools for investigating iron homeostasis. In particular,
hey have been shown to have, like HH patients, im-
aired iron uptake of transferrin-bound iron by the du-
denum32 and up-regulation of the expression of the
uodenal iron transporters.33,34 Of particular interest,
train background was found to be a major determinant
n iron loading, both in �2m�/�35 and in Hfe�/�36 mice,
uggesting the existence of genes other than Hfe that
odify the gravity of iron accumulation. We previously

eported that, compared with the C57BL/6 strain, the
BA/2 strain was particularly susceptible to iron loading

n response to Hfe disruption.34 In this study, we have
aken advantage of the marked phenotypic differences
etween these 2 strains to localize quantitative trait loci
QTLs) that control hepatic iron loading in this murine
odel. We first generated a cross between the C57BL/6

nd DBA/2 Hfe knockout mouse strains and produced a
egregating progeny of more than 1000 mice by an F2
ntercross (F1 � F1). To increase the power of mapping
uantitative traits, we then selected the 276 F2 mice that
ontributed the most to the total linkage information for
enotyping with 145 microsatellite markers covering the
ntire mouse genome.

Materials and Methods
Mice

The disrupted Hfe allele, initially on a mixed back-
round (129/Ola � C57BL/6),30 was bred by 10 successive
ackcrosses onto the DBA/2 and C57BL/6 backgrounds. Mice
eterozygous for the disrupted allele were then mated to
roduce Hfe-null (Hfe�/�) mice. Using the convention of (fe-
ale � male) to indicate strain parentage, 671 Hfe�/� F2 mice

321 males and 350 females) were generated from 6 ([C57BL/
� DBA/2]F1 � [C57BL/6 � DBA/2]F1) mating pairs, 284
fe�/� F2 mice (144 males and 140 females) were generated

rom 8 ([DBA/2 � C57BL/6]F1 � [DBA/2 � C57BL/6]F1)
ating pairs, 33 Hfe�/� F2 mice (16 males and 17 females)
ere generated from 1 ([C57BL/6 � DBA/2]F1 � [DBA/2 �
57BL/6]F1) mating pair, and 40 Hfe�/� F2 mice (18 males
nd 22 females) were generated from 1 ([DBA/2 � C57BL/
]F1 � [C57BL/6 � DBA/2]F1) mating pair. The studied
opulation consisted of Hfe�/� C57BL/6 mice (45 males and
6 females), Hfe�/� DBA/2 mice (35 males and 43 females),
fe�/� F1 mice (26 males and 30 females), and the 1028
fe�/� F2 mice (499 males and 529 females). The mice were
oused in the Institut Fédératif de Recherche 30 animal facility
nd had free access to water and R03 diet (UAR, Epinay-sur-
rge, France) containing iron 280 mg/kg. All mice were

nalyzed at 7 weeks of age and were fasted for 14 hours before
lood sampling. Liver and spleen were taken from each mouse
nd were frozen at �70°C. Experimental protocols were ap-
roved by the IFR 30 Animal Care and Use Committee.

Nonheme Iron Quantitation of Liver Tissue

Samples of approximately 100 mg were crushed to
ulp, dried overnight in a 65°C oven, and weighed. The dried
iver was then transferred in 1 mL of acid mixture (3 mol/L
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Cl/10% trichloroacetic acid) and heated in a 65°C oven for
0 hours. After cooling to room temperature, 50 �L of the
lear acid extract was brought to 500 �L with iron-free water,
laced in 2 mL of the working chromagen reagent (1 volume
f 0.1% bathophenanthroline sulfonate/1% thioglycolic acid
dded to 5 volumes of saturated sodium acetate and 5 volumes
f iron-free water) and vortex-mixed. Working chromagen
eagent was prepared fresh daily. A total of 250 �L of a 200
mol/L iron standard solution (Sigma Aldrich, Saint Quentin
allavier, France) was treated the same way and used for
alibration. Color was allowed to develop for 15 minutes, and
he absorbance was measured at a wavelength of 535 nm on a
harmacia Biotech Ultrospec 2000 spectrophotometer.

Genetic Typing

DNA was prepared from frozen spleens by using the
ucleospin Tissue kit (Macherey-Nagel, Hoerdt, France). A

otal of 145 microsatellite markers were selected to genotype
he extreme 276 F2 mice and were chosen at 10-to 20-cM
ntervals based on the genetic map of the mouse.37 Polymerase
hain reaction amplifications (total volume, 10 �L) were per-
ormed in PCR Master Mix 1X (Promega, Charbonnières-les-
ains, France), with 0.25 to 1 �mol/L of each primer. An
ligonucleotide of each pair was labeled with 1 of the fluores-
ent dyes 6-FAM or HEX. Primers were obtained from MWG-
iotech AG (Ebersberg, Germany). Thirty cycles of 94°C for
0 seconds, 55°C for 30 seconds, and 72°C for 30 seconds were
enerally used, although some primers required a slightly
igher or lower annealing temperature for optimum amplifi-
ation. After electrophoresis of pools of 4 to 9 amplification
roducts and an internal lane size standard (Genescan 400 HD)
abeled with the ROX dye (Applied Biosystems, Courtaboeuf,
rance) on a 96-capillary ABI PRISM 3700 DNA Analyser
CRGS platform; Genopole, Toulouse, France), fluorescent-
abeled fragments were sized by using the fragment analysis
oftware packages Genescan and Genotyper (Applied Biosystems).

Data Analysis

Map orders and intermarker distances were obtained
rom the genotypes of the F2 progeny by using MAPMAKER/
XP 3.0 (available at http://www.broad.mit.edu/genome_
oftware/other/mapmake.html).38 All genotypes with a loga-
ithm of odds (LOD) of error �1% were rescored. Interval
apping of the QTLs affecting hepatic iron concentration was

erformed with the MAPMAKER/QTL program (available at
ttp://www.broad.mit.edu/genome_software/other/qtl.html).39

he genotypes of the 752 nonextreme F2 mice were handled as
issing data to avoid an overestimation of the phenotypic

ffects due to a biased selection of the progeny.39 Individual
onheme hepatic iron values were log-transformed before ge-
etic analysis, and multipoint analysis was performed by using
ecessive, dominant, additive, and free models of inheritance.
OD scores were calculated at 2-cM intervals throughout the
enome. A LOD score �2.8 was the threshold for suggestive
vidence of linkage, and a LOD score �4.3 was interpreted as
ignificant evidence of linkage.40 Epistatic interactions be-
ween the 4 loci achieving LOD scores indicative of significant
inkage to the level of hepatic iron loading were evaluated with
6-df likelihood ratio test comparing logistic regression mod-

ls with and without interaction terms.

Results
Hepatic Iron Concentration in the Parental
Strains and in the F1 and F2 Progenies

To investigate the genetic nature of susceptibility
o iron loading in Hfe�/� mice, the liver iron content of
028 F2 progeny was analyzed when mice were 7 weeks
ld. The results were compared with results from 81
57BL/6 Hfe�/�, 78 DBA/2 Hfe�/�, and 56 F1 Hfe�/�

ice. As previously reported,34 iron concentrations of
ivers from C57BL/6 Hfe�/� mice (962 � 292 �g of iron
er gram of dry weight) were significantly lower than
hose from DBA/2 Hfe�/� mice (2207 � 362 �g of iron
er gram of dry weight; P � 0.0001), thus confirming
hat the severity of iron loading in Hfe-deficient mice is
nfluenced by the strain background. Results in Figure 1
how that the 56 F1 mice had intermediate levels of
epatic iron loading (1480 � 321 �g of iron per gram
f dry weight) compared with parental mice. The relative
evel of susceptibility observed in parental strain mice
as thus inherited by their progeny as an additive trait.
he 1028 F2 mice had levels of iron loading that were
lso intermediate between the parental strains (1591 �
81 �g of iron per gram of dry weight), but with a larger

igure 1. Box-and-whisker plots of nonheme iron concentrations in
he liver of the Hfe-deficient parental strains—C57BL/6 (n � 81) and
BA/2 (n � 78)—and their F1 (n � 56) and F2 (n � 1028) progenies.
otches indicate the median for each group of mice. The lower and
pper limits of the boxes represent the 25th and the 75th percentiles,
espectively. Mice with iron concentrations below the 25th percentile
r above the 75th percentile are displayed individually. Whisker lines
xtend from below and above the box limits to the minimum obser-
ation above the lower fence (1.5 times the interquartile range below
he 25th percentile) and the maximum observation below the upper
ence (1.5 times the interquartile range above the 75th percentile),
espectively. Outliers are observations above the upper fence.
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ariance than the F1 mice. The proportion of the total
henotypic variance within the F2 progeny due to ge-
etic effects amounts to 62%, indicating that suscepti-
ility to iron overload in the Hfe�/� mouse model of HH
s heritable and can be explained by polymorphic auto-
omal loci. To determine whether sex influences iron
oading in Hfe-deficient mice, we compared hepatic iron
oncentrations in males and females of the parental
trains and of the F1 and F2 progenies. Female mice had
lightly higher hepatic iron concentrations than males of
he same strains/progenies, but the difference was signif-
cant only for the C57BL/6 strain (P � 0.012). Never-
heless, in addition to the genetic markers, we added sex
s a covariate in the models used in MAPMAKER/QTL
o predict hepatic iron loading.

Linkage Analysis of Susceptibility to
Hepatic Iron Loading in the F2 Progeny

To increase the power of mapping modifier loci
hat regulate hepatic iron loading, we selectively geno-
yped only the extreme progeny, i.e., the subset of 276
2 animals with the highest (n � 137) or the lowest
n � 139) liver iron concentrations. We identified 7
egions—2 on chromosome 1 and 1 on each of chromo-
omes 3, 7, 8, 11, and 12—with LOD scores �2.8
Table 1). Genomic segments on chromosomes 7, 8, 11,
nd 12 had LOD scores �4.3 (Figure 2), indicating
ignificant linkage40 of each of these chromosomal seg-
ents to the hepatic iron loading severity trait. These
TLs on chromosomes 7, 8, 11, and 12 were designated
fe-modifier 1, 2, 3, and 4, respectively. Of interest, the
2 mice homozygous for the DBA/2 allele at Hfe-mod-
fier 1 on chromosome 7 and for 1 of the suggested QTLs
n chromosome 1 developed less severe hepatic iron
verload than the F2 animals homozygous for the
57BL/6 allele (Table 1). The fact that 1 parental strain

hows larger phenotypic values than the other does not

able 1. Description of the Modifier Loci Affecting the Severi

Chromosome
QTL position

(marker 
 cM)a

Maximum LO

Free Dom

D1Mit231 
 5.4 3.05b 1
D1Mit206 
 3.8 2.95b 0
D3Mit32 2.84b 2

(Hfe-modifier 1) D7Mit246 
 1.1 14.47c 9
(Hfe-modifier 2) D8Mit211 
 0.1 12.96c 10

1 (Hfe-modifier 3) D11Mit86 
 1.5 6.04c 3
2 (Hfe-modifier 4) D12Mit158 
 1.1 6.72c 5

Distance in cM from the specified marker.
Suggestive evidence of linkage.
Significative evidence of linkage.
uarantee that all QTLs segregating in that cross increase
he phenotypic value in that strain.41 In fact, there are
any examples of QTLs decreasing the phenotypic

alue,42–44 and it is therefore not surprising to detect
TLs derived from the DBA/2 strain that decrease he-
atic iron loading severity. As shown in Table 1, the
TLs on chromosomes 7 and 8 seem to be inherited in

n additive fashion, whereas the QTL on chromosome 11
ay be inherited in either a recessive or an additive
anner and the QTL on chromosome 12 may be inher-

ted in either a dominant or an additive manner. Of the
eaker linkages on chromosome 1, 1 is probably inher-

ted in a recessive manner, whereas no distinction be-
ween recessive and additive modes of inheritance can be
ade for the other. Together, these loci explain 34.4% of

he phenotypic variation and roughly 55% of the genetic
ariation in hepatic iron loading among the F2 genera-
ion. The relationship among the 4 loci with significant
vidence for linkage was assessed with logistic regression
nalysis by using the nearest markers to the LOD score
eak in each of the identified genomic intervals as ex-
lanatory variables and by treating hepatic iron loading
s a binary response variable (high vs. low). No evidence
or interactions among the 4 loci was found (	2

6 � 9.90
or testing all 2-loci interactions; P � 0.13), strongly
uggesting that the 4 loci act additively, without epistasis.

Discussion
In this study, we used interval mapping to local-

ze modifier genes that modulate hepatic iron loading in
fe-deficient mice. We showed that susceptibility to
epatic iron loading in these mice has a significant
enetic component and is inherited as a complex trait to
hich several genetic determinants, together with envi-

onmental factors, contribute. We identified 4 genomic
ntervals on chromosomes 7, 8, 11, and 12 that are

Hepatic Iron Loading Detected by Linkage Analysis

res under specific model
Phenotypic
effect of
DBA/2
alleles

Variance
explained (%)Recessive Additive

2.89 2.74 Decrease 2.2
2.48 1.29 Increase 2.1
1.91 2.82 Increase 2.3

10.11 14.46 Decrease 9.6
6.60 12.63 Increase 8.3
5.40 5.85 Increase 5.3
2.95 6.32 Increase 4.6
ty of

D sco

inant

.29

.23

.27

.55

.52

.51

.91
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trongly linked to severe iron loading, and we showed
hat each acts in an independent, additive fashion. In
ddition, 3 genome segments—2 on chromosome 1 and
on chromosome 3—met the suggestive level of signif-

cance for linkage. However, although these different
egions of the mouse genome show cosegregation with
epatic iron concentration, none of these loci is necessary
r sufficient for the development of severe iron loading.
ather, the frequency of severe iron loading increases as
function of the number of susceptibility alleles at
fe-modifier loci present in individual progeny. This is

llustrated in Figure 3, in which the liver iron concen-
ration of the 276 F2 mice genotyped for this study is
resented as a function of the genotypes of these mice at
he markers nearest to the LOD score peaks on chromo-
omes 7 and 8. This mode of inheritance, consistent with
he predictions of a threshold model, is typical of a
olygenic trait.

igure 2. LOD scores for the quantitative traits that modulate hepatic
ith LOD scores exceeding the threshold value of 4.3 (dotted line) requ
upport intervals for the position of the QTLs: outside these regions,
he black bars indicate the 2-LOD support intervals: outside these reg
he MAPMAKER/QTL computer package.39
Genes involved in iron homeostasis and located within
he identified intervals are good candidates for modula-
ion of hepatic iron loading in Hfe-deficient mice. The
haracterization of polymorphisms within the coding and
egulatory regions of these genes between parental
57BL/6 and DBA/2 strains and the analysis of their

egregation together with hepatic iron loading in the F2
rogeny will be an essential step toward the demonstra-
ion of their implication as modifier genes in this murine
odel. It is noteworthy that the Hfe-modifier 1 support

nterval on chromosome 7 contains several genes that
ave recently been shown to exert important roles in the
egulation of iron metabolism. The best candidates are
he 2 highly related mouse hepcidin genes, Hamp1 and
amp2. Hepcidin is a peptide hormone synthesized pre-
ominantly in the liver and whose expression is induced
y dietary iron loading.45–47 Hepcidin-deficient mice ac-
umulate iron in parenchymal cells because of greater

oading in Hfe-deficient mice. The chromosomes harboring the 4 QTLs
or significant linkage are displayed. The black bars indicate the 1-LOD
dds ratio decreased by a factor of 10. The thin lines extending from
the odds ratio decreased by a factor of 100. Data were analyzed with
iron l
ired f
the o
ions,
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ntestinal absorption and impaired retention of iron by
eticuloendothelial macrophage cells.48 Recently, hu-
ans with severe HH have been shown to have null
utations in the gene encoding hepcidin.49 In contrast,

ransgenic mice overexpressing hepcidin have markedly
ower iron stores, resulting in severe anemia.50 Thus,
epcidin seems to be a negative regulator of iron release
rom both reticuloendothelial macrophages and from
nterocytes that mediate intestinal absorption of dietary
ron. Of further interest, a lower hepcidin expression has
ecently been observed in Hfe�/� mice51,52 and in indi-
iduals with HFE-associated HH.53 Genetic variability
n the expression of hepcidin could thus contribute to the
ide range in phenotypic expression observed in Hfe-
eficient mice of different genetic backgrounds and in
ndividuals who are homozygous for the C282Y allele in
he HFE gene. The recent report of 2 families in which
here was concordance between the severity of iron over-
oad and heterozygosity for mutations in the hepcidin
ene when present with the HFE C282Y mutation54

rompted us to sequence the 2 hepcidin genes in the
57BL/6 and DBA/2 strains. By comparison with the
57BL/6 strain, 3 amino acid variants were found in the
amp1 gene of the DBA/2 strain (H27Q, E43G, and
73K), and 1 variant was found in the Hamp2 gene

S76F). Amino acids 73 and 76 are located between the
fth and the sixth cysteines in the active peptide com-
rising the 25–amino acid C-terminal portion of the
olecule. The N73K variant changes the charge of res-

due 73 from neutral to basic, and the S76F variant

igure 3. Relative contribution of Hfe-modifier 1 and Hfe-modifier 2 to
he nonheme iron concentration in the liver of the 276 F2 progeny
enotyped for this study. To visualize the contributions of the 2 loci in
hromosomes 7 and 8 to hepatic iron loading, mice of the F2 progeny
ere separated according to their genotypes at markers D7Mit246
nd D8Mit211. C, alleles of C57BL/6 origin; D, alleles of DBA/2
rigin. Each dot represents 1 mouse. None of these loci is necessary
r sufficient for the development of severe iron loading. However, the
requency of severe iron loading increases as a function of the num-
er of susceptibility alleles in individual mice.
ubstitutes an aromatic hydrophobic residue for a small
olar amino acid. Whether these changes are functionally
ignificant remains to be established. C/EBP� has re-
ently been implicated in hepcidin gene regulation in
esponse to iron status.55 Iron overload indeed leads to a
ignificant increase of C/EBP� protein and hepcidin
ranscripts in mouse liver. It is interesting to note that
he gene encoding C/EBP� maps to the Hfe-modifier 1
egion on chromosome 7 and is therefore another candi-
ate modifier gene in this region.
The region encompassing Hfe-modifier 2 on chromo-

ome 8 also contains potential candidate genes. Among
hem is heme oxygenase 1 (Hmox1) which is an impor-
ant enzyme in the salvage of iron from heme.56 Hmox1-
eficient mouse fibroblasts accumulate iron by increasing
ron uptake and decreasing iron release,57 and it was
ecently shown that a relative deficiency in Hmox1 could
ave a role in hepatic iron accumulation in Hfe-deficient
ice.52 Calreticulin is also encoded within this interval.
xpression of calreticulin was recently shown to be di-
inished in Hfe-deficient mice.52 It is interesting to note

hat calreticulin interacts with C/EBP� messenger RNA
nd represses the translation of C/EBP proteins.58 Be-
ause C/EBP� stimulates hepcidin transcription,55 ge-
etic variability in the expression of C/EBP� could also
ontribute to the modulation of phenotypic expression
bserved in Hfe-deficient mice. Other candidate genes
ithin the Hfe-modifier 2 support interval encode me-

allothioneins 1 and 2, which are cysteine-rich metal-
inding proteins that exert cytoprotective effects against
etal toxicity.59 The last candidate gene encodes hapto-

lobin, whose best-known biological function is to
apture free hemoglobin in plasma to allow hepatic
ecycling of heme iron. A common duplication polymor-
hism in the haptoglobin gene was shown to affect iron
etabolism in humans, and carriers of the haptoglobin

-2 genotype have higher serum iron, transferrin satura-
ion, and ferritin than other subjects.60 It is interesting to
ote that individuals carrying this genotype are overrep-
esented among C282Y-homozygous patients and have
ore pronounced iron overload.61 Genetic variability in

he haptoglobin gene could therefore also contribute to
he wide range in phenotypic expression observed in
fe-deficient mice of different genetic backgrounds.
The region around D1Mit231 on chromosome 1,

hich met the threshold for suggestive evidence of link-
ge, contains the Slc39a1 gene, which encodes the mouse
omologue of human ferroportin-1, in which several
utations/deletions have been shown to be responsible

or an autosomal dominant inheritance of increased body
ron stores characterized by increased serum ferritin con-
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entration and normal transferrin saturation.62–65 The
lc39a1 gene can thus be considered a candidate gene on
ouse chromosome 1.
No obvious candidate genes were identified in the

elomeric region of chromosome 1 or on chromosomes 3,
1, or 12. It is possible, however, that genes not yet
nown to play a role in iron homeostasis modulate
isease expression. It is noteworthy that the region en-
ompassing Hfe-modifier 3 on chromosome 11 contains
he gene that encodes a novel antimicrobial peptide
xpressed in the liver, LEAP-2, which has some similar-
ties with LEAP-1/hepcidin.66 Its physiological role must
e unraveled in the near future, together with its possible
mplication in the regulation of iron homeostasis. Fur-
hermore, the telomeric region of chromosome 1, which
et the threshold for suggestive evidence of linkage, is

omologous to human chromosome 1q21, to which the
ene that causes juvenile HH maps.67–69 It is possible
hat mutations of the same gene may help to explain why
nly a few Hfe-deficient mice develop severe iron-storage
isease. Alternative strategies based on microarray anal-
sis of target organ gene expression and genotyping of
ingle nucleotide polymorphisms must be implemented
o identify the Hfe modifiers that account for the variable
isease expression in these regions. Their discovery is
ikely to shed new light on the mechanisms that control
otal body iron content.

In conclusion, this study is the first reported genome-
ide linkage scan for Hfe-modifier genes in the mouse.
ur data provide a clear demonstration of the polygenic
attern of hepatic iron loading inheritance in Hfe-defi-
ient mice. Finding the genetic modifiers that are re-
uired in addition to Hfe invalidation to produce signif-
cant iron-storage disease will be an important step
orward and is likely to provide substantial insight into
he pathogenic mechanisms that lead to iron overload. In
umans, the HFE C282Y mutation is not necessarily
ccompanied by an increase in the concentration of serum
erritin,11–16 and family studies indicate that genetic
odifiers explain, at least in part, this reduced pen-

trance. Although the Hfe�/� mouse model does not
ntirely reflect HH, especially because Hfe�/� mice do
ot develop hypogonadism, hypopituitarism, diabetes
ellitus, cardiomyopathy, joint disease, or frank cirrho-

is, they have excessive iron accumulation in the liver.
he severity varies according to the strain. Because se-

um ferritin levels in humans closely mirror hepatic iron
tores, at least some of the genetic modifiers responsible
or variable disease expression in humans may be either
irect homologues of loci identified in the mouse or
enes encoding other proteins involved in the same
iological pathways.22 Their identification should be fa-
ilitated by this preliminary study and will provide us
ith further insights into the mechanisms by which
rganisms modulate iron homeostasis to accommodate
he adverse effects of the HFE C282Y mutation.
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